1St Sem

Name of the Assistant/ Associate Professor: - Dr. Vinod Kumar

Class: B.A/B.Sc 1st

Subject: Mathematics(Algebra)

Week	Topics
Sep 1	Symmetric, Skew symmetric, Hermitian and skew
	Hermitian matrices
Sep 2	Elementary Operations on matrices. Rank of a matrices.
	Inverse of a matrix. Linear dependence and independence
	of rows and columns of matrices. Row rank and column
	rank of a matrix.
Sep 3	. Eigenvalues, eigenvectors and the characteristic
	equation of a matrix. Minimal polynomial of a matrix.
Sep 4	Cayley Hamilton theorem and its use in finding the
	inverse of a matrix.
Oct 1	Applications of matrices to a system of linear (both
	homogeneous and non-homogeneous) equations.
Oct2	Theorems on consistency of a system of linear equations.
	Unitary and Orthogonal Matrices, Bilinear and Ouadratic
	forms.
Oct 3	Relations between the roots and coefficients of general
	polynomial equation in one variable.
Oct 4	Solutions of polynomial equations having conditions on
	roots.
Nov 1	Common roots and multiple roots. Transformation of
	equations.
Nov 2	Nature of the roots of an equation Descarte's rule of
	signs.
Nov 3	Solutions of cubic equations (Cardon's method).
Nov 1	Biguadratic equations and their solutions
Dec 1	Revision

5th Sem

Name of the Assistant/ Associate Professor: - Dr. Vinod Kumar

Class: B.Sc 3rd

Subject: Group and Rings (math)

Week	Topics		
Sep 1	Definition of group with example and properties, subgroups and its criteria		
Sep 2	Generation of group, cyclic group		
Sep 3	Lagrange theorem and normal subgroups		
Sep 4	Quotient group, homomorphism, isomorphism, automorphism		
Oct 1	Automorphism of cyclic group, Alternating group, Kayley theorem		
Oct2	Introduction to ring, subring		
Oct 3	Fields, Ideal and Quotient rings		
Oct 4	Euclideans rings, polynomial rings		
Nov 1	Polynomial over the rational field		
Nov 2	The Einstein criteria		
Nov 3	Polynomial rings		
Nov 4	Commutative rings		
Dec 1	Unique factorization domain and revision		

Name of Lecturer:-Dr. Vinod kumar

Class and Section :- B.sc 2nd

Semester :- 4th

Subject:- Mathematics (Group and Rings)

Sr. no.	Week/months	Topic / particulars
1	1 st / April	Definition of group with example and properties, subgroups and its criteria
2	2 nd /April	Generation of group, cyclic group
3	3 rd / April	Lagrange theorem and normal subgroups
	ath (A 11	
4	4 ^{ui} / April	Quotient group, homomorphism, isomorphism, automorphism
5	1st/Mars	
5	1°7 May	Automorphism of cyclic group, Alternating group, Kayley theorem
6	2nd/ Mox	Introduction to ring, subring
0	2 / Wiay	Introduction to ring, subring
7	3 rd / may	Fields Ideal and Quotient rings
,	5 / Indy	Tields, ideal and Quotient migs
8	4 th / May	Euclideans rings, polynomial rings
	5	2
9	5 th / May	Polynomial over the rational field
10	1 st / June	The Einstein criteria
11	2 nd / June	Polynomial rings, Commutative rings
12	3 rd / June	Unique factorization domain and revision

LESSON PLAN OF MATHEMATICS

Name of College:- CH. BANSI LAL GOVT. P.G. COLLEGE LOHARU (BHIWANI)

Academic Session:- 2022-23

Semester:- B.Sc VIth Sem

Subject:- LINEAR ALGEBRA

Teacher name:- Dr. Vinod kumar

LESSON PLAN OF LINEAR ALGEBRA
Introduction to Syllabus and Pattern
Vector space, Subspace
Sum and direct sum of subspaces, Linear span, L.I. and L.D. subsets, finitely generated vector space, finite dimensional vector space.
Basis, Quotient space and its dimension, Homomorphism and isomorphism, Linear transformation and linear form of vector space
Dual space, Bi dual space, annihilator of subspace, Null space, Range space of linear transformation
Rank and Nullity theorem, Algebra of linear transformation, Minimal polynomial of a linear transformation
Singular and non-singular linear transformation, Matrix of linear transformation, change of basis, Eigenvalue and eigen vector
Inner product space, Cauchy- Schwarz inequality, Orthogonal vector, orthogonal sets and basis
Bessel's inequality, Gram-Schmidt orthogonalization process, Adjoint and its properties, Unitary linear transformation

		_
		1
		-
	1	_

3rd Sem

Name of the Assistant/ Associate Professor: - Dr. Vinod kumar

Class: B.A /B.SC. 2nd

Subject: Numerical methods with Programming in C(Math)

Week	Topics		
Sep 1	Programmer model of a computer, algorithms, flow chart		
Sep 2	Data type, operators and expressions, input/output functions		
Sep 3	Decision control structures, logical and conditional statements, Loops, Switch and Case control structure		
Sep 4	Strings, character data types, Arithmetic operation on characters		
Oct 1	Structure: definition and uses		
Oct2	Solution of algebraic and transcendental equations; Bisection method		
Oct 3	Regula falsi method, secant method		
Oct 4	Fixed point iterative method, Newton Raphson's method		
Nov 1	Newton iterative formulae for nth root of a number and order of convergence		
Nov 2	Gauss elimination method, Gauss Jordan method		
Nov 3	Iterative method and Jacobi method		
Nov 4	Gauss seidal method and Relaxation method		
Dec 1	Order of convergence and revision		

Name of Lecturer:-Dr. Vinod kumar

Class and Section :- B.A/B.sc 1st

Semester :- 2nd

Subject:- Mathematics (vector calculus)

Sr. no.	Week/months	Topic / particulars
1	1 st / APRIL.	General equation of second degree. Tracing of conics. Tangent at any point to the conic, chord of contact,
2	2 nd /APRIL	pole of line to the conic, director circle of conic. System of conics.
3	3 rd / APRIL	Confocal conics. Polar equation of a conic, tangent and normal to the conic.
4	4 th / APRIL	Gradient of a scalar point function, geometrical interpretation of grad $\boldsymbol{\varPhi}$, character of gradient as a point function.
5	1 st / MAY	Divergence and curl of vector point function, characters of Div \vec{f} and Curl \vec{f} as point function, examples.
6	2 nd / MAY	Gradient, divergence and curl of sums and product and their related vector identities. Laplacian operator
7	3 rd / MAY	Orthogonal curvilinear coordinates Conditions for orthogonality fundamental triad of mutually orthogonal unit vectors.
8	4 th / MAY	Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal curvilinear coordinates
9	5 TH / MAY	Cylindrical co-ordinates and Spherical co-ordinates.
10	1 st / JUNE	Vector integration; Line integral, Surface integral,
11	2 Nd / JUNE	Volume integral Theorems of Gauss, Green & Stokes and problems based on these theorems and revision

Signature